skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Strom, Suzanne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Line Height Absorption (LHA) method uses absorption of light to estimate chlorophyll-a. While most users consider regional variability and apply corrections, the effect of temporal variability is typically not explored. The Northern Gulf of Alaska (NGA) was selected for this study because there was no published regional value and its large swings in temporal productivity would make it a good candidate to evaluate the effect of temporal variability on the relationship. The mean NGA value of 0.0114 obtained here should be treated with caution, as variation in the slope of the relationship (aLH*), and thus chlorophyll-a estimates, in the NGA region varied by ∼25% between spring (aLH* = 0.0109) and summer (aLH* = 0.0137). Results suggest that this change is driven by a shift in pigment packaging and cell size associated with changes in mixed layer depth and stratification. Consideration of how temporal variability may affect the accuracy of the LHA method in other regions is thus recommended. 
    more » « less
  2. Several decades of research and monitoring in the northern Gulf of Alaska (NGA) have revealed climate-related shifts in ocean temperature and salinity. Accompanying these shifts have been changes in the abundance and diversity of species, from single-celled plankton to fish, seabirds, and marine mammals. Research is documenting long-term change in the region and revealing the mechanisms by which recent marine heatwaves affect the ability of higher trophic levels to survive in these waters. Heatwaves in the northern Gulf of Alaska are likely to become longer, more frequent, and more intense, making long-term monitoring of ecosystem changes critical to understanding and predicting effects on valuable commercial fisheries and culturally significant native harvesting. In addition, documentation of change is necessary for projecting regional and global future climate scenarios and for informing climate-​related policy decisions. 
    more » « less
  3. Abstract A 25‐year (1996–2020) hindcast from a coupled physical‐biogeochemical model is evaluated with nutrients, phytoplankton and zooplankton field data and is analyzed to identify mechanisms controlling seasonal and interannual variability of the northern Gulf of Alaska (NGA) planktonic food web. Characterized by a mosaic of processes, the NGA is a biologically complex and productive marine ecosystem. Empirical Orthogonal Function (EOF) analysis combining abiotic and biotic variables averaged over the continental shelf reveals that light intensity is a main driver for nanophytoplankton variability during spring, and that nitrate availability is a main driver for diatoms during spring and for both phytoplankton during summer. Zooplankton variability is a combination of carry‐over effects from the previous year and bottom‐up controls from the current year, with copepods and euphausiids responding to diatoms and microzooplankton responding to nanophytoplankton. The results also demonstrate the effect of nitrate availability and phytoplankton community structure on changes in biomass and energy transfers across the planktonic food web over the entire growing season. In particular, the biomass of large copepods and euphausiids increases more significantly during years of higher relative diatom abundance, as opposed to years with higher nitrate availability. Large microzooplankton was identified as the planktonic group most sensitive to perturbations, presumably due to its central position in the food web. By quantifying the combined variability of several key planktonic functional groups over a 25‐year period, this work lays the foundation for an improved understanding of the long‐term impacts of climate change on the NGA shelf. 
    more » « less
  4. Abstract Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state. 
    more » « less